These filter_*()
functions are used to subset a data frame. Each function
subsets rows based on the value of one column. For numeric columns, a row
will be kept if the value is greater than or equal to the value specified.
For categorical columns, a row will be kept if the value is equal to the
value specified. Note that when a condition evaluates to NA the row will be
dropped, unlike base subsetting with [
.
Usage
filter_aa_change(.data, .value, .preserve = FALSE)
filter_alt_umi_count(.data, .value, .preserve = FALSE)
filter_coverage(.data, .value, .preserve = FALSE)
filter_gene(.data, .value, .preserve = FALSE)
filter_mutation_name(.data, .value, .preserve = FALSE)
filter_ref_umi_count(.data, .value, .preserve = FALSE)
filter_targeted(.data, .value, .preserve = FALSE)
Arguments
- .data
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).
- .value
The filtering value to be applied.
- .preserve
Relevant when the
.data
input is grouped. If.preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting data, otherwise the grouping is kept as is.
See also
dplyr::filter()
for more complex filtering operations.
Examples
data <- tibble::tribble(
~sample, ~gene, ~coverage,
"S1", "atp6", 10,
"S2", "crt", 20,
)
filter_gene(data, "atp6")
#> Warning: This function provides a simple filtering interface.
#> ℹ For more complex filtering, please use `dplyr::filter()`.
#> This warning is displayed once every 8 hours.
#> # A tibble: 1 × 3
#> sample gene coverage
#> <chr> <chr> <dbl>
#> 1 S1 atp6 10
filter_coverage(data, 15)
#> Warning: This function provides a simple filtering interface.
#> ℹ For more complex filtering, please use `dplyr::filter()`.
#> This warning is displayed once every 8 hours.
#> # A tibble: 1 × 3
#> sample gene coverage
#> <chr> <chr> <dbl>
#> 1 S2 crt 20